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CHAPTER OBJECTIVES

In this chapter you will learn about:

High-speed adders. implemented in a hierarchical structure,
using carry-lookahead logic to generate carry signals in parallel
The Booth algorithm, used to determine how multiplicand
summands are selected by the multiplier bit patterns in
performing multiplication of signed numbers

High-speed multipliers, which use carry-save addition to add
summands in parallel

Circuits that perform division operations

The representation of floating-point numbers in the IEEE
standard format. and how to perform basic arithmetic operations
on them
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CHAPTER 6 + ARITHMETIC

A basic operation in all digital computers is the addition or subtraction of two numbers.
Arithmetic operations occur at the machine instruction level. They are implemented.
along with basic logic functions such as AND. OR, NOT. and EXCLUSIVE-OR (XOR).
in the arithmetic and logic unit (ALU) subsystem of the processor. as discussed in
Chapter 1. In this chapter. we present the logic circuits used to implement arithmetic
operations. The time needed to perform an addition operation affects the processor’s
performance. Multiply and divide operations. which require more complex circuitry
than either addition or subtraction operations. also affect performance. We present some
of the techniques used in modern computers to perform arithmetic operations at high
speed.

Compared with arithmetic operations. logic operations are simple to implement
using combinational circuitry. They require only independent Boolean operations on
individual bit positions of the operands. whereas carry/borrow lateral signals are re-
quired in arithmetic operations.

In Section 2.1, we described the representation of signed binary numbers, and
showed that 2's-complement is the best representation from the standpoint of perform-
ing addition and subtraction operations. The examples in Figure 2.4 show that two.
n-bit. signed numbers can be added using n-bit binary addition. treating the sign bit the
same as the other bits. In other words. a logic circuit that is designed to add unsigned
binary numbers can also be used to add signed numbers in 2's-complement. If overflow
does not occur, the sum is correct. and any output carry can be ignored. The first two
sections of this chapter present logic circuit networks for addition and subtraction.

6.1 ADDITION AND SUBTRACTION OF SIGNED NUMBERS

Figure 6.1 shows the logic truth table for the sum and carry-out functions for adding
equally weighted bits x; and y; in two numbers X and Y. The figure also shows logic
expressions for these functions, along with an example of addition of the 4-bit unsigned
numbers 7 and 6. Note that each stage of the addition process must accommodate a
carry-in bit. We use ¢; to represent the carry-in to the ith stage. which is the same as
the carry-out from the (i — I)st stage.

The togic expression for s; in Figure 6.1 can be implemented with a 3-input XOR
gate. used in Figure 6.2a as part of the logic required for a single stage of binary
addition. The carry-out function. ¢; 4. is implemented with a two-level AND-OR logic
circuit. A convenient symbol for the complete circuit for a single stage of addition.
called a full adder (FA). is also shown in the figure.

A cascaded connection of 1 full adder blocks. as shown in Figure 6.2h, can be
used to add two n-bit numbers. Since the carries must propagate, or ripple. through this
cascade, the configuration is called an n-bit ripple-carry adder.

The carry-in, ¢, into the least-significant-bit (LSB) position provides a convenient
means of adding I to a number. For instance. forming the 2's-complement of a number
nvolves adding | to the 1's-complement of the number. The carry signals are also
useful for interconnecting & adders to form an adder capable of handling input numbers
that are kn bits long. as shown in Figure 6.2¢.



6.1 ADDITION AND SUBTRACTION OF SIGNED NUMBERS

¥ Ay Carry-in ¢, Sum s; Carry-out ¢,
0 0 0 0 0
0 0 1 i 0
0 1 0 1 0
0 1 1 0 1
] 0 0 1 0
| 0 i 0 1
1 | 0 0 1
| ! 1 1 1
S, = NG HEXYNCE NN CFEXNNCG=E OO
Cop = VO 00+ Xy

!

X 7 o il 1] _— 5 arry-i
£Y = 46 = +00 1[0, SN Lo v e
—_— —_— i+ ’

z 13 BIERE 5

Legend for stage i

Figure 6.1 Logic specification for a stage of binary addition.

6.1.1 ADDITION/SUBTRACTION LOGIC UNIT

The n-bit adder in Figure 6.25 can be used to add 2’s-complement numbers X and Y.
where the x,_; and y,_ bits are the sign bits. In this case. the carry-out bit. ¢,,. 1 not part
of the answer. In section 2.1.4. arithmetic overflow was discussed. Overflow can only
oceur when the signs of the two operands are the same. In this case. overflow obviously
occurs if the sign of the result is different. Therefore. a circuit to detect overflow can

he added to the n-bit adder by implementing the logic expression
Overflow = X, V1 Syt + XV, o1 Sn-1

It can also be shown that overflow occurs when the carry bits ¢, and ¢, .| are different.
(See Problem 6.9.) Therefore. a simpler alternative circuit for detecting overflow can
be obtained by implementing the expression ¢, @ ¢, -y with an XOR gate.

In order to perform the subtraction operation X — ¥ on 2's-complement numbers
X and Y. we form the 2’s-complement of ¥ and add it to X. The logic circuit network
shown in Figure 6.3 can be used to perform either addition or subtraction based on the
value applied to the Add/Sub input control line. This line is set to 0 for addition, apply-
ing the ¥ vector unchanged to one of the adder inputs along with a carry-in signal. ¢y.
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Figure 6.2 Logic for addition of binary vectors.
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Figure 6.3 Binary addition-subtraction logic network.

of 0. When the Add/Sub control line is set to 1, the ¥ vector is |’s-complemented
(that is, bit complemented) by the XOR gates and ¢ is set to 1 to complete the
2's-complementation of ¥. Remember that 2’s-complementing a negative number is
done in exactly the same manner as for a positive number. An XOR gate can be added
to Figure 6.3 to detect the overflow condition ¢, @ ¢;,_.

6.2 DESIGN OF FAST ADDERS

If an n-bit ripple-carry adder is used in the addition/subtraction unit of Figure-6:3. it may
have too much delay in developing its outputs, sy through s,y and ¢,. Whether or not
the delay incurred is acceptable can be decided only in the context of the speed of other
processor components and the data transfer times of registers and cache memories.
The delay through a network of logic gates depends on the integrated circuit electronic
technology (see Appendix A) used in fabricating the network and on the number of gates
in the paths from inputs to outputs. The delay through any combinational logic network
constructed from gates in a particular technology is determined by adding up the number
of logic-gate delays along the longest signal propagation path through the network. In
the case of the n-bit ripple-carry adder. the longest path is from inputs x¢. yo, and ¢ at
the LSB position to outputs ¢, and s, ., at the most-significant-bit (MSB) position.
Using the logic implementation indicated in Figure 6.2a. ¢,y is available in 2(n—1)
gate delays. and s, is correct one XOR gate delay later. The final carry-out. ¢, is
available after 2 gate delays. Therefore, if a ripple-carry adder is used to implement the
addition/subtraction unit shown in Figure 6.3, all sum bits are available in 21 gate delays,
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including the delay through the XOR gates on the Y input. Using the implementation
¢y @ ¢, for overflow. this indicator is available after 2,, + 2 gate delays.

Two approaches can be taken to reduce delay in adders. The first approach is to use
the fastest possible electronic technology in implementing the ripple-carry logic design
or variations of it. The second approach is to use an augmented logic gate network
structure that is larger than that shown in Figure 6.2b. We will describe an easily
understood version of the second approach in the next section. In practice, a number
of design techniques have been used to implement high-speed adders. They include
electronic circuit designs for fast propagation of carry signals as well as variations on
the basic network structure presented in the next section. '

6.2.1 CARRY-LOOKAHEAD ADDITION

A fast adder circuit must speed up the generation of the carry signals. The logic ex-
pressions for s; (sum) and ¢4, (carry-out) of stage i (see Figure 6.1) are

Si=X By D
and
Citl = 3V + ¢ + v
Factoring the second equation into
Cip1 = Ny (O + )
we can write
Cip] = G,' + Pj(',‘
where
Gi=xy and P =x +y;

The expressions G; and P; are called the generate and propagate functions for stage .
If the generate function for stage i is equal to 1. then ¢; | = 1, independent of the input
carry, ¢;. This occurs when both x; and y; are 1. The propagate function means that an
input carry will produce an output carry when either x; is | or v; is I.LAI,I G, and P,
functions can be formed independently and in parallel in one logic-gate delay after the
X and Y vectors are applied to the inputs of an n-bit adder. Each bit stage contains an
AND gate to form G, an OR gate to form P;. and a three-input XOR gate to form s;.
A simpler circuit can be derived by observing that an adequate propagate function can
be realized as P; = x; @ v;, which differs from P, = x; + v, only when v; = v, = I.
But, in this case G, = I, so it does not matter whether P; is O or 1. Then. using a
cascade of two 2-input XOR gates to realize the 3-input XOR function. the basic cell
B in Figure 6.4a can be used in each bit stage.

" Expanding ¢; in terms of i — | subscripted variables and substituting into the ¢; |
expression, we obtain

Cie1 =G+ PGy + PP ¢y
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Figure 6.4 4-bit carry-lookahead adder.
Continuing this type of expansion. the final expression for any carry variable is

[6.1]

=G, +PG; +PP_\Giot - +PP_ - PIGy+ PPy Py

Thus. all carries can be obtained three gate delays after the input signals X, Y. and ¢
are applied because only one gate delay is needed to develop all P; and G; signals,

)
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followed by two gate delays in the AND-OR circuit for ¢;., . After a further XOR gate
delay. all sum bits are available, Therefore. independent of 1. the n-bit addition process
requires only four gate delays.

Let us consider the design of a 4-bit adder. The carries can be implemented as

1 =Gy + Pyey

c2 =G+ PiGy+ P Pycy

3 =G>+ PG| + PP Gy + PP, Pycy

¢y =G3+ PyGao+ PyP-Gy + P3PsP Gy + P3P Py Pycy

The complete 4-bit adder is shown in Figure 6.4b. The carries are implemented in the
block labeled carry-lookahead logic. An adder implemented in this form is called a
carry-lookahead adder. Delay through the adder is 3 gate delays for all carry bits and 4
gate delays for all sum bits. In comparison. note that a 4-bit ripple-carry adder requires
7 gate delays for 53 and 8 gate delays for ¢;.

If we try to extend the carry-lookahead adder of Figure 6.4b for longer operands.
we run into a problem of gate fan-in constraints. From Expression 6.1, we see that the
last AND gate and the OR gate require a fan-in of / + 2 in generating ¢; .. For ¢4 in
the 4-bit adder. a fan-in of 5 is required. This is about the limit for practical gates. So
the adder design shown in Figure 6.4b cannot be directly extended to longer operand
sizes. However. if we cascade a number of 4-bit adders. as shown in Figure 6.2¢, it is
possible to build longer adders.

Eight 4-bit carry-lookahead adders can be connected as in Figure 6.2¢ to form a
32-bitadder. The delays in generating sum bits s3;, $39. $29. $23. and ¢3» in the high-order
4-bitadder in this cascade are calculated as follows. The carry-out ¢ from the low-order
adder is available 3 gate delays after the input operands X. Y, and ¢, are applied to
the 32-bit adder. Then. ¢y is available at the output of the second adder after a further
2 gate delays. ¢, is available after a further 2 gate delays. and so on. Finally, ¢, the
carry-in to the high-order 4-bit adder. is available after a total of (6 x 2) +3 = 15 gate
delays. Then. ¢3> and all carries inside the high-order adder are available after a further
2 gate delays, and all 4 sum bits are available after 1 more gate delay. for a total of 18
gate delays. This should be compared to total delays of 63 and 64 for 3, and e ifa
ripple-carry adder is used.

In the next section. we show how it is possible to improve upon the cascade structure
just discussed. leading to further reduction in adder delay. The key idea is to generate
the carries ¢y. ¢y, ... in parallel, similar to the way that ¢|. ¢». ¢, and ¢,. are generated
in parallel in the 4-bit carry-lookahead adder.

Higher-Level Generate and Propagate Functions

In the 32-bit adder just discussed, the carries ¢5. ¢g. ¢ja. ... ripple through the
4-bit adder blocks with two gate delays per block. analogous to the way that individual
carries ripple through each bit stage in a ripple-carry adder. By using higher-level block
generate and propagate functions, it is possible to use the lookahead approach to develop
the carries ¢y, ¢s. ¢y, ... in parallel. in a higher-level carry-lookahead circuit.
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Figure 6.5 16-bit carry-lookahead adder built from 4-bit adders (see Figure 6.4b).

Figure 6.5 shows a 16-bit adder built from four 4-bit adder blocks. These blocks
provide new output functions detined as G/ and P/. where k = 0 for the first 4-bit
block, as shown in Figure 6.4b, k = 1 for the second 4-bit block, and so on. In the first
block.

Py = PsPrP Py
and
Gl =G+ PyGy+ PyP-Gy + PyPoP Gy

In words. we say that the first-level G; and P; functions determine whether bit stage
generates or propagates a carry. and that the second-level G{ and P! functions determine
whether block k generates or propagates a carry. With these new functions available.
it is not necessary to wait for carries to ripple through the 4-bit blocks. Carry ¢y¢ 1s
formed by one of the carry-lookahead circuits in Figure 6.5 as

1o = Gt + P{GY+ P{ PG| + P{P{ P/ G{ + P P] P/ P]c,

The input carries to the 4-bit blocks are formed in parallel by similar shorter expressions.
These expressions for ¢e. 1. ¢x. and ¢;. are identical in form to the expressions for ;.
¢3. ¢, and ¢y, respectively, implemented in the carry-lookahead circuits in Figure 6.45.
Only the variable names are different. Therefore, the structure of the carry-lookahead
circuits in Figure 6.5 is identical to the carry-lookahead circuits in Figure 6.45. We
should note, however, that the carries ¢4. ¢g. ¢12. and ¢ 6. generated internally by the 4-bit
adder biocks, are not needed in Figure 6.5 because they are generated by the higher-
level carry-lookahead circuits.

Now. consider the delay in producing outputs from the 16-bit carry-lookahead
adder. The delay in developing the carries produced by the carry-lookahead circuits is
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two gate delays more than the delay needed to develop the G/ and P/ functions. The
latter require two gate delays and one gate delay. respectively. after the generation of
G; and P;. Therefore, all carries produced by the carry-lookahead circuits are available
5 gate delays after X, Y. and ¢ are applied as inputs. The carry ¢s 1s generated inside
the high-order 4-bit block in Figure 6.5 in two gate delays after ¢/, followed by sis
in one further gate delay. Therefore, s;5 is available after 8 gate delays. Note that if
a 16-bit adder is built by cascading 4-bit carry-lookahead adder blocks, the delays in
developing ¢4 and s)5 are 9 and 10 gate delays. respectively. as compared to 5 and 8
gate delays for the configuration in Figure 6.5.

Two 16-bit adder blocks can be cascaded to implement a 32-bit adder. In this
configuration, the output ¢ from the low-order block is the carry input to the high-
order block. The delay is much lower than the delay through the 32-bit adder that we
discussed earlier. which was built by cascading eight 4-bit adders. In that configuration.
recall that s3; is available after 18 gate delays and ¢3» is available after 17 gate delays.
The delay analysis for the cascade of two 16-bit adders is as follows. The carry ¢y out
of the low-order block is available after 5 gate delays, as calculated above. Then., both
23 and c¢3» are available in the high-order block after a further 2 gate delays, and ¢ is
available 2 gate delays after ¢»y. Therefore. ¢3; is available after a total of 9 gate delays.
and s3; is available in 10 gate delays. Recapitulating, s3; and ¢3» are available after [0
and 7 gate delays. respectively, compared to 18 and 17 gate delays for the same outputs
if the 32-bit adder is built from a cascade of eight 4-bit adders.

The same reasoning used in developing second-level G/ and P/ functions from
first-level G, and P; functions can be used to develop third-level G/’ and P/ functions
from G/ and P! functions. Two such third-level functions are shown as outputs from
the carry-lookahead logic in Figure 6.5. A 64-bit adder can be built from four of the
16-bit adders shown in Figure 6.5 along with additional carry-lookahead logic circuits
that produces carries ¢q. ¢32. ¢33, and cqy. Delay through this adder can be shown to
be 12 gate delays for 5,3 and 7 gate delays for 4., using an extension of the reasoning
used above for the 16-bit adder. (See Problem 6.10.)

6.3 MULTIPLICATION OF POSITIVE NUMBERS

The usual algorithm for multiplying integers by hand is illustrated in Figure 6.6a for
the binary system. This algorithm applies to unsigned numbers and to positive signed
numbers. The product of two n-digit numbers can be accommodated in 2n digits, so
the product of the two 4-bit numbers in this example fits into 8 bits, as shown. In the
binary system. multiplication of the multiplicand by one bit of the multiplier is easy.
If the multiplier bit is 1. the multiplicand is entered in the appropriate position to be
added to the partial product. If the multiplier bit is C. then Os are entered, as in the third
row of the example.

Binary multiplication of positive operands can be implemented in a combinational,
two-dimensional logic array. as shown in Figure 6.6/, The main component in each cell
is a full adder FA. The AND gate in each cell determines whether a multiplicand bit.
m ;, is added to the incoming partial-product bit. based on the value of the multiplier



6.3 MULTIPLICATION OF POSITIVE NUMBERS

I 1 0 1 (13) Multiplicand M
x 1 0 1 1 (1'1) Multiplier Q
101
1 1 0 1
00 00
11 0 1
I 00 0 1 1 1 1 (142) Product P

(a) Manual muitiplication algorithm

Multiplicand

Partial product 0 my 0 my" 0 m;" 0 g

w4

-] - 0
PP1
-
PP2

PP3

-] - 3

l_ -0

l ‘ ‘ ‘ PP4 = p, pg. --- Py = Product

Py Pg Ps Py P3

Bit of incoming partial product (PP7)

(/’
Typical cell
r_?
Carry-out FA «1— Carry-in
y l I Y

J
Bit of outgoing partial product [PP(i+1)]

(b) Array implementation

Figure 6.6 Array multiplication of positive binary operands.
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bit, g;. Each row i. where 0 < i < 3, adds the multiplicand (appropriately shifted) to
the incoming partial product, PPi, to generate the outgoing partial product, PP(i + 1),
if g; = 1. If g; = 0. PPi is passed vertically downward unchanged. PPO is all 0s, and
PP4 is the desired product. The multiplicand is shifted left one position per row by the
diagonal signal path.

The worst case signal propagation delay path is from the upper right corner of the
array to the high-order product bit output at the bottom left corner of the array. The path
consists of the staircase pattern that includes the two cells at the right end of each row.
followed by all the cells in the bottom row. Assuming that there are two gate delays
from the inputs to the outputs of a full adder block, the path has a total of 6(n — 1) — |
gate delays, including the initial AND gate delay in all cells, for the n x n array. (See
Problem 6.12.) Only the AND gates are actually needed in the first row of the array
because the incoming partial product PP is zero. This has been taken into account in
developing the delay expression.

Multiplication is usually provided in the machine instruction set of a processor.
High-performance processor chips use an appreciable area of the chip to perform arith-
metic functions on both integer and floating-point operands. (Floating-point operations
are discussed later in this chapter.) Although the preceding combinational multiplier
is easy to understand, it uses many gates for multiplying numbers of practical size,
such as 32- or 64-bit numbers. Multiplication can also be performed using a mixture of
combinational array techniques, similar to those shown in Figure 6.6, and sequential
techniques requiring less combinational logic.

The simplest way to perform multiplication is to use the adder circuitry in the ALU
for a number of sequential steps. The block diagram in Figure 6.7a shows the hardware
arrangement for sequential multiplication. This circuit performs multiplication by using
a single n-bit adder » times to implement the spatial addition performed by the n rows
of ripple-carry adders of Figure 6.6b. Registers A and Q combined hold PPi while
multiplier bit ¢; generates the signal Add/Noadd. This signal controls the addition of
the multiplicand, M. to PPi to generate PP(i + 1). The product is computed in 1 cycles.
The partial product grows in length by one bit per cycle from the initial vector, PPO,
of n Os in register A. The carry-out from the adder is stored in flip-flop C, shown at
the left end of register A. At the start, the multiplier is loaded into register Q, the
multiplicand into register M, and C and A are cleared to 0. At the end of each cycle,
C. A, and Q are shifted right one bit position to allow for growth of the partial product
as the multiplier is shifted out of register Q. Because of this shifting, multiplier bit g;
appears at the LSB position of Q to generate the Add/Noadd signal at the correct time,
starting with go during the first cycle, ¢, during the second cycle, and so on. After they
are used, the multiplier bits are discarded by the right-shift operation. Note that the
carry-out from the adder is the leftmost bit of PP(i + 1), and it must be held in the C
flip-flop to be shifted right with the contents of A and Q. After n cycles, the high-order
half of the product is held in register A and the low-order half is in register Q. The
multiplication example of Figure 6.6a is shown in Figure 6.75 as it would be performed
by this hardware arrangement.

Using this sequential hardware structure, it is clear that a Multiply instruction takes
much more time to execute than an Add instruction. Several techniques have been used
to speed up multiplication; we discuss some of them in the next few sections.
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Figure 6.7 Sequential circuit binary multiplier.
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6.4 SIGNED-OPERAND MULTIPLICATION

We now discuss multiplication of 2’s-complement signed operands. generating a double-
length product. The general strategy is still to accumulate partial products by adding
versions of the multiplicand as selected by the multiplier bits.

First. consider the case of a positive multiplier and a negative multiplicand. When
we add a negative multiplicand to a partial product, we must extend the sign-bit value of
the multiplicand to the left as far as the product will extend. In Figure 6.8. for example.
the 5-bit signed operand, —13. is the multiplicand, and it is multiplied by +11. the mul-
tiplier, to get the 10-bit product, —143. The sign extension of the multiplicand is shown
in blue. Thus. the hardware discussed earlier can be used for negative multiplicands if
it provides for sign extension of the partial products.

For a negative multiplier, a straightforward solution is to form the 2's-complement
of both the multiplier and the multiplicand and proceed as in the case of a posi-
tive multiplier. This is possible because complementation of both operands does not
change the value or the sign of the product. A technique that works equally well
for both negative and positive multipliers. called the Booth algorithm. is described
next.

6.4.1 BOOTH ALGORITHM

The Booth algorithm generates a 2n-bit product and treats both positive and negative
2’s-complement n-bit operands uniformly. To understand the essence of this algorithm.
consider a multiplication operation in which the multiplier is positive and has a single
block of Is. for example, 0011110. To derive the product. we could add four appro-
priately shifted versions of the multiplicand, as in the standard procedure. However,
we can reduce the number of required operations by regarding this multiplier as the

0 0 1t 1 (=13
x 0 1 0 1 1 (+1

Sign extension is
shown in blue

o 0 0 o0 0 o0

l 0 1 | 0 0 0 1 (=143)

Figure 6.8 Sign extension of negative multiplicand.
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Figure 6.9 Normal and Booth multiplication schemes.
difference between two numbers:

0100000 (32)
—0000010 (2)

0011110 (30)

This suggests that the product can be generated by adding 2’ times the multiplicand to
the 2's-complement of 2! times the multiplicand. For convenience, we can describe the
sequence of required operations by recoding the preceding multiplier as 0 +1000 —10.

In general, in the Booth scheme, — | times the shifted multiplicand is selected when
moving from 0 to 1, and 41 times the shifted multiplicand is selected when moving
from | to 0, as the multiplier is scanned from right to left. Figure 6.9 illustrates the
normal and the Booth algorithms for the example just discussed. The Booth algorithm
clearly extends to any number of blocks of Is in a multiplier. including the situation in
which a single 1 is considered a block. See Figure 6.10 for another example of recoding
a multiplier. The case when the least significant bit of the multiplier is | is handled
by assuming that an implied 0 lies to its right. The Booth algorithm can also be used
directly for negative multipliers. as shown in Figure 6.11.

To demonstrate the correctness of the Booth algorithm for negative multipliers, we
use the following property of negative-number representations in the 2’s-complement
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Figure 6.10 Booth recoding of a multiplier.
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Figure 6.11 Booth multiplication with a negative multiplier.

system: Let the leftmost 0 of a negative number, X. be at bit position . that is.
X=11...10x; ;...x9
Then the value of X is given by
VIX) = 2"y x 28 T g x Y

The correctness of this expression for V (X) is shown by observing that if X is formed
as the sum of two numbers
11...100000...0
+  00...00x;_,...x9

X=11...10x ... x9

then the top number is the 2’s-complement representation of —2* !, The recoded mul-
tiplier now consists of the part corresponding to the second number, with —1 added in
position k + 1. For example. the multiplier 110110 is recoded as 0 —1 +1 0 —1 0.

The Booth technique for recoding multipliers is summarized in Figure 6.12. The
transformation 011 ... 110 = +100...0 —10 is called skipping over Is. This term is
derived from the case in which the multiplier has its 1s grouped into a few contiguous
blocks. Only a few versions of the shifted multiplicand (the summands) must be added
to generate the product, thus speeding up the multiplication operation. However. in
the worst case — that of alternating Is and Os in the multiplier — each bit of the
multiplier selects a summand. In fact, this results in more summands than if the Booth
algorithm were not used. A 16-bit, worst-case multiplier. an ordinary multiplier. and a
good multiplier are shown in Figure 6.13.
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Multiplier Version of multiplicand

. ) selected by biti
Biti Biti—1

0 0 0xM

0 | +1xM

! 0 -1xM

1 1 0xM

Figure 6.12 Booth multiplier recoding table.

Worst-case 1
multiplicr

+1 =1 +1 =1 +1 =1 +1 =t +1 =1 +1 -1 +} -1 +1 -I

Ordinary
multiplier

0 -1 0 0+ -1+ O0-t+t 0 0 0 -1 0 0O

Good
multiplier

0O 0 0+ 0 0 0 0= 0 0 0+ 0 0 -l

Figure 6.13 Booth recoded multipliers.

The Booth algorithm has two attractive features. First. it handles both positive and
negative multipliers uniformly. Second. it achieves some efficiency in the number of
additions required when the multiplier has a few large blocks of Is. The speed gained
by skipping over Is depends on the data. On average. the speed of doing multiplication
with the Booth algorithm is the same as with the normal algorithm.

6.5 FAST MULTIPLICATION

We now describe two techniques for speeding up the multiplication operation. The
first technique guarantees that the maximum number of summands (versions of the
multiplicand) that must be added is n/2 for n-bit operands. The second technique
reduces the time needed to add the summands.
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6.5.1 BIT-PAIR RECODING OF MULTIPLIERS

A technique called bir-pair recoding halves the maximum number of summands. It
is derived directly from the Booth algorithm. Group the Booth-recoded multiplier
bits in pairs, and observe the following: The pair (+1 —1) is equivalent to the pair
(0 +1). That is, instead of adding —1 times the multiplicand M at shift position i to
+1 x M at position i + 1. the same result is obtained by adding 41 x M at position i.
Other examples are: (+1 0)is equivalentto (0 +2). (=1 +1)is equivalentto (0 —1).
and so on. Thus, if the Booth-recoded multiplier is examined two bits at a time, starting
from the right. it can be rewritten in a form that requires at most one version of the
multiplicand to be added to the partial product for each pair of multiplier bits. Fig-
ure 6.14a shows an example of bit-pair recoding of the multiplier in Figure 6.11. and

Sign extension Implied 0 to right of LSB

T[] 0 10 o]

(a) Example of bit-pair recoding derived from Booth recoding

Multiplier bit-puir Multiplier bit on the right Multiplicand
i+l ; i selected at position
0 0 0 0OxM
0 0 l +1xM
0 | 0 +1xM
0 1 i +2xM
1 0 0 -2xM
1 0 1 -1 xM
1 1 0 -1 xM
1 | ! 0xM

(b) Table of multiplicand selection decisions

Figure 6.14 Multiplier bit-pair recoding.
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01 1 01 (+13
b 0o 1 0 (-6)

01101

0 -1+l -1 0
0000000000
L1111 0011
00001 1 01
110011
000000
L1101 1001 0 (=78

01101

0 -1 =2
1 11001 10

1 00 11
0 0

1011001010

O — =
]
O
-
<

Figure 6.15 Multiplication requiring
only 11/2 summands.

Figure 6.145 shows a table of the multiplicand selection decisions for all possibilities.
The multiplication operation in Figure 6.11 is shown in Figure 6.15 as it would be
computed using bit-pair recoding of the multiplier.

6.5.2 CARRY-SAVE ADDITION OF SUMMANDS

Multiplication requires the addition of several summands. A technique called carry-
save addition (CSA) speeds up the addition process. Consider the array for 4 x 4
multiplication shown in Figure 6.16a. This structure is the general array shown in
Figure 6.6. with the first row consisting of just the AND gates that implement the bit
products mqo. mMaqo. Mgo. and mogo.

Instead of letting the carries ripple along the rows. they can be “saved™ and intro-
duced into the next row, at the correct weighted positions, as shown in Figure 6.165.
This frees up an input to three full adders in the first row. These inputs are used to
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(a) Ripple-carry array (Figure 6.6 structure)
0 34 LR 14 gy
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(b) Carry-save array

Figure 6.16 Ripple-carry and carry-save arrays for the multiplication operation M x Q = P for 4-bit operands.
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I 0o 1 1 0 1 (45) M
'S NS T U S B | (63) Q

T]1o 1 1 0 1 A

Clolr 10 B

oo ] oo C

oo o1 [1]o o D

b0 o1 1 fol E

o110 | F

[V 10 o o I 0 0 1 | (2.835) Product

Figure 6.17 A multiplication example used to illustrate carry-save addition as
shown in Figure 6.18.

introduce the third summand bit products n12g>. mg». and mog>. Now, two inputs of
cach full adder in the second row are fed by sum and carry outputs from the first row.
The third input is used to introduce the bit products mags. nyga. and n1ygs of the fourth
summand. The high-order bit products n13¢> and m 3¢5 of the third and fourth summands
are introduced into the remaining free inputs at the left end in the second and third rows.
The saved carry bits and the sum bits from the second row are now added in the third
row to produce the final product bits.

Delay through the carry-save array is somewhat less than delay through the ripple-
carry array. This is because the S and C vector outputs from each row are produced
in parallel in one full-adder delay. The amount of reduction in delay is considered in
Problem 6.22.

A more significant reduction in delay can be achieved as follows. Consider the
addition of many summands. as required in the multiplication of longer operands. We
can group the summands in threes and perform carry-save addition on each of these
groups in parallel to generate a set of S and C vectors in one tull-adder delay. Next,
we group all of the S and C vectors into threes. and perform carry-save addition on
them. generating a further set of S and C vectors in one more full-adder delay. We
continue with this process until there are only two vectors remaining. They can then be
added in a ripple-carry or a carry-lookahead adder to produce the desired product.

Consider the example of adding the six shifted versions of the multiplicand for the
case of multiplying two 6-bit unsigned numbers where all six bits of the multiplier are
equal to 1. Such an example is shown in Figure 6.17. The six summands. A. B. . ... F
are added by carry-save addition in Figure 6.18. The “blue boxes™ in these two figures
indicate the same operand bits, and show how they are reduced to sum and carry bits in
Figure 6.18 by carry-save addition. Three levels of carry-save addition are performed.
as shown schematically in Figure 6.19. It is clear from this figure that the final two
vectors Sy and C; are available in three full-adder delays after the six input summands

387



388

CHAPTER 6 < ARITHMETIC
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1 0 0 0 1o [ S,
0 0 1 1 1 |I| 0 0 C,
L1 0 0 0 0 1 1 Ll oS, ]
O 0 1 1 1 1 0 0 l—l. C,
L1 0 0 0 0 1 | S, _J
L1 0 1 0 1 0 0 0 1 | [ s,
O 0 0 0 1 0 1 1 0 0 0 Cy |
0O 0 1 1 1 1 0 0 I cyu—
O 1 0 1 1 1 0 1 0 0 1 1 [ s,
+0 10 1 0 1 0 0 0 0 0 e
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Figure 6.18 ' The multiplication example from Figure 6.17 performed using carry-save
addition.

are applied to level 1. The final regular addition operation on S, and C;. which produces
the product. can be done with either a ripple-carry or a carry-lookahead adder.

Let us compute the total logic gate delay required to perform the 6 x 6 multipli-
cation as shown in Figures 6.18 and 6.19. After one AND gate delay. used to select the
summands based on the multiplier bits. all six summands are available as inputs to CSA
level 1. The outputs S, and C; from the third CSA level are available 6 gate delays later,
assuming two gate delays per CSA level. The final two vectors can be added in a further
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L | [ | : : Level 1 CSA
| L__r__k__’_l Level 2 CSA
C, Cy S3
[ : | : | Level 3 CSA
|_r_i Final addition
+
Product

Figure 6.19 Schematic representation of
the carry-save addition
operations in Figure 6.18.

8 gate delays using a carry-lookahead adder of the form shown in Figure 6.5. The total
gate delay is therefore 15. By comparison, the total gate delay in performing multiplica-
tion by using an n x n array of the type shown in Figure 6.6is 6(n — 1) — 1;sothe 6 x 6
case has a gate delay of 29. This halving of delay is a result of using both carry-save
addition of summands in parallel and carry-lookahead addition of the final two vectors.

When the number of summands is large, the time saved is proportionally much
greater. For example. the addition of 32 numbers using the carry-save addition method,
following the pattern shown in Figure 6.19, requires only 8 levels of CSA steps before the
final Add operation. In general, it can be shown that approximately 1.7logk — 1.7 levels
of CSA steps are needed to reduce k summands to 2 vectors, which, when added, produce
the desired sum. (See Problem 6.23.) A 64-bit carry-lookahead adder can be used to add
the final 2 vectors. Total delay for 32 x 32 multiplication is calculated as follows: one
gate delay for the initial AND gates, whose outputs produce the 32 summands; 16 gate
delays for 8 levels of CSA steps: and 12 gate delays for the longest path (to 563) through
the 64-bit adder. The total delay is thus 29 gate delays. In comparison. an array multiplier
for the 32 x 32 case requires 185 gate delays to generate the last bit of the product.

Some issues have been omitted in discussing the use of carry-save addition for
speeding up the multiplication operation. First. when negative summands are involved,
as they are for signed-operand multiplication using the Booth algorithm, it is necessary
o accommodate sign-extension in the CSA logic. Full extension to the double-length
product distance is not actually required. Only a few bits of extension at each CSA level
are needed. Second, we have assumed that a 2n-bit carry-lookahead adder is needed
1o add the final two S and C vectors for n x n multiplication. Somewhat fewer bits
are actually involved in this final addition because some of the low-order product bits
are determined earlier. But this is not a big factor; and the delay analysis that we have
used is correct because the adder is not significantly shorter. Finally, we have used n
summands for an n % n multiplication. But if bit-pair recoding of the multiplier is done,
the number of summands is reduced to n/2. This reduces the number of CSA levels
required from 1.7/og.n — 1.7 to 1.7logan — 3.4.
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Summary of Fast Multiplication

We now summarize the techniques for high-speed multiplication. Bit-pair recoding
of the multiplier, derived from the Booth algorithm. reduces the number of summands by
afactor of 2. These summands can then be reduced to only 2 by using a relatively small
number of carry-save addition steps. The final product can be generated by an addition
operation that uses a carry-lookahead adder. All three of these techniques — bit-pair
recoding of the multiplier, carry-save addition of the summands. and lookahead addition
— have been used in various ways by the designers of high-performance processors to
reduce the time needed to perform multiplication.

6.6 INTEGER DIVISION

In Section 6.4, we discussed positive-number multiplication by relating the way the
multiplication operation is done manually to the way it is done in a logic circuit. We
use the same approach here in discussing integer division. We discuss positive-number
division in detail, and then make some general comments on the signed-operand case.

Figure 6.20 shows examples of decimal division and binary division of the same
values. Consider the decimal version first. The 2 in the quotient is determined by the
following reasoning: First, we try to divide 13 into 2. and it does not work. Next. we try
to divide 13 into 27. We go through the trial exercise of multiplying 13 by 2 to get 26.
and. knowing that 27 — 26 = 1 is less than 13, we enter 2 as the quotient and perform
the required subtraction. The next digit of the dividend. 4, is brought down. and we
finish by deciding that 13 goes into 14 once. and the remainder is 1. We can discuss
binary division in a similar way. with the simplification that the only possibilities for
the quotient bits are 0 and 1.

A circuit that implements division by this longhand method operates as follows: It
positions the divisor appropriately with respect to the dividend and performs a subtrac-
tion. If the remainder is zero or positive, a quotient bit of I is determined, the remainder
is extended by another bit of the dividend. the divisor is repositioned. and another sub-
traction is performed. On the other hand. if the remainder is negative, a quotient bit of
0 is determined. the dividend is restored by adding back the divisor. and the divisor is
repositioned for another subtraction.

21 10101
13 5274 1101 ) 100010010
26 1101
14 10000
13 1101
I 110
1101

Figure 6.20 Llonghand division examples.
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l Shift left
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Quotient
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/
{— |
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Figure 6.21 Circuit arrangement for binary division.

Restoring Division

Figure 6.21 shows a logic circuit arrangement that implements restoring division.
Note its similarity to the structure for multiplication that was shown in Figure 6.7. An
n-bit positive divisor is loaded into register M and an n-bit positive dividend is loaded
into register Q at the start of the operation. Register A is set to 0. After the division
is complete. the n-bit quotient is in register Q and the remainder is in register A. The
required subtractions are facilitated by using 2’s-complement arithmetic. The extra bit
position at the left end of both A and M accommodates the sign bit during subtractions.
The following algorithm performs restoring division.

Do the following 11 times:

I. Shift A and Q left one binary position.

|89

Subtract M from A. and place the answer back in A.
3. Ithe sign of A is 1. set ¢ to 0 and add M back to A (that is. restore A): otherwise.
set ¢o to l.

Figure 6.22 shows a 4-bit example as it would be processed by the circuit in
Figure 6.21.
Nonrestoring Division

The restoring-division algorithm can be improved by avoiding the need for restoring
A after an unsuccessful subtraction. Subtraction is said to be unsuccessful if the result
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Figure 6.22 A restoring-division example.

is negative. Consider the sequence of operations that takes place after the subtraction
operation in the preceding algorithm. If A is positive, we shift left and subtract M. that
is. we perform 2A -- M. If A is negative. we restore it by performing A 4+ M. and then
we shift it left and subtract M. This is equivalent to performing 2A + M. The ¢ bit
is appropriately set to 0 or | after the correct operation has been performed. We can

summarize this in the following algorithm for nonrestoring division.

Step 1: Do the following n times:

I, If the sign of A is 0. shift A and Q left one bit position and subtract M from
A: otherwise. shift A and Q left and add M to A.

2. Nowi. if the sign of A is 0, set ¢y to |: otherwise, set ¢y to 0.

Step 2: If the sign of A'is I, add M to A.
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Figure 6.23 A nonrestoring-division example.

Step 2 is needed to leave the proper positive remainder in A at the end of the n cycles
of Step 1. The logic circuitry in Figure 6.21 can also be used to perform this algorithm.
Note that the Restore operations are no longer needed, and that exactly one Add or
Subtract operation is performed per cycle. Figure 6.23 shows how the division example
in Figure 6.22 is executed by the nonrestoring-division algorithm.

There are no simple algorithms for directly performing division on signed operands
that are comparable to the algorithms for signed multiplication. In division. the operands
can be preprocessed to transform them into positive values. After using one of the algori-
thms just discussed. the results are transformed to the correct signed values. as necessary.

6.7 FLOATING-POINT NUMBERS AND OPERATIONS

Until now, we have dealt exclusively with fixed-point numbers and have considered
them as integers. that is, as having an implied binary point at the right end of the number.
It is also possible to assume that the binary point is just to the right of the sign bit, thus
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representing a fraction. In the 2's-complement system. the signed value F. represented
by the n-bit binary fraction

B = 17().17 ;[) 3...1), -1

is given by

4

F(B)y=—box2"4+b x2 " 4b sx24+idb gy, x2"0"

where the range of Fis
—l < F < l ~~2 -1y

Consider the range of values representable in a 32-bit, signed. fixed-point format.
Interpreted as integers, the value range is approximately 0 to £2.15 x 10°. If we consider
them to be fractions. the range is approximately +4.55 x 107" 10 1. Neither of these
ranges is sufficient for scientific calculations. which might involve parameters like
Avogadro’s number (6.0247 x 10>  mole ™) or Planck s constant (6.6254 x 10 *erg-s).
Hence, we need to easily accommodate both very large integers and very small fractions.
To do this. a computer must be able to represent numbers and operate on them in such
a way that the position of the binary point is variable and is automatically adjusted as
computation proceeds. In such a case, the binary point is said to float. and the numbers
are called floating-point mumbers. This distinguishes them from fixed-point numbers.
whose binary point is always in the same position.

Because the position of the binary point in a floating-point number is variable.
it must be given explicitly in the floating-point representation. For example. in the
familiar decimal scientific notation, numbers may be written as 6.0247 x 10>, 6.6254 x
1077, —1.0341 x 107, =7.3000 x 10~ '*. and so on. These numbers are said to be given
to five significant digits. The scale factors (107, 10727 and so on) indicate the position
of the decimal point with respect to the significant digits. By convention. when the
decimal point is placed to the right of the first (nonzero) significant digit. the number is
said to be normalized. Note that the base. 10, in the scale factor is fixed and does not need
to appear explicitly in the machine representation of a floating-point number. The sign.
the significant digits, and the exponent in the scale factor constitute the representation.
We are thus motivated to define a floating-point number representation as one in which
a number is represented by its sign. a string of significant digits. commonly called the
mantissa, and an exponent to an implied base for the scale factor.

6.7.1 IEEE STANDARD FOR FLOATING-POINT NUMBERS

We start with a general form and size for floating-point numbers in the decimal system.
and then relate this form to a comparable binary representation. A useful form is

X1 XXX X5 X X7 x 10577
where X; and Y, are decimal digits. Both the number of significant digits (7) and
the exponent range (£99) are sufficient for a wide range of scientific calculations. It
is possible to approximate this mantissa precision and scale factor range in a binary
representation that occupies 32 bits, which is a standard computer word length. A 24-bit
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mantissa can approximately represent a 7-digit decimal number. and an 8-bit exponent
to an implied base of 2 provides a scale factor with a reasonable range. One bit is
needed for the sign of the number. Since the leading nonzero bit of & normalized binary
mantissa must be a 1, it does not have to be included explicitly in the representation.
Therefore. a total of 32 bits is needed.

This standard for representing floating-point numbers in 32 bits has been developed
and specified in detail by the Institute of Electrical and Electronics Engineers (IEEE)

[1]. The standard describes both the representation and the way in which the four

basic arithmetic operations are to be performed. The 32-bit representation is given in
Figure 6.24«. The sign of the number is given in the first bit. followed by a representation
for the exponent (to the base 2) of the scale factor. Instead of the signed exponent, E,
the value actually stored in the exponent field is an unsigned integer E' = E + 127.

- 32 bits -
S I M

i ) \% \%

Sign of L .

= . 8-bit signed 23-bit
number : = . S
O sionifies cxponent in mantissa fraction
signifies +

S excess-127
I stgnifies - e .
< representation

E - 127
Value represented = £1.M x 2

(a) Single precision

0100101000900 101 0 . .. 0

—&87
Value represented = 1.001010...0x2

(b) Example of a single-precision number

- 64 bits -
S E’ M
Sign —J v
11-bit excess-1023 52-bit
exponent mantissa fraction

ET—1023
Value represented = =1.M x 2

(c) Double precision

Figure 6.24 |EEE standard floating-point formats.
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This is called the excess-127 format. Thus, E' is in the range 0 < E’ < 255. The
end values of this range. 0 and 255, are used to represent special values, as described
below. Therefore, the range of E’ for normal values is | < E’ < 254, This means that
the actual exponent, E. is in the range —126 < E < 127. The excess-x representation
for exponents enables efficient comparison of the relative sizes of two floating-point
numbers. (See Problem 6.27.)

The last 23 bits represent the mantissa. Since binary normalization is used, the most
significant bit of the mantissa is always equal to |. This bit is not explicitly represented:
it is assumed to be to the immediate left of the binary point. Hence, the 23 bits stored
in the M field actually represent the fractional part of the mantissa, that is, the bits to
the right of the binary point. An example of a single-precision floating-point number is
shown in Figure 6.24b.

The 32-bit standard representation in Figure 6.24a is called a single-precision rep-
resentation because it occupies a single 32-bit word. The scale factor has a range of
27120 t0 2+127 'which is approximately equal to 1073, The 24-bit mantissa provides
approximately the same precision as a 7-digit decimal value. To provide more preci-
sion and range for floating-point numbers, the IEEE standard also specifies a double-
precision format, as shown in Figure 6.24¢. The double-precision format has increased
exponent and mantissa ranges. The 11-bit excess-1023 exponent E’ has the range
I < E' < 2046 for normal values, with 0 and 2047 used to indicate special values,
as before. Thus, the actual exponent E is in the range —1022 < E < 1023, providing
scale factors of 27192% to 21923 (approximately 10%3%%). The 53-bit mantissa provides a
precision equivalent to about 16 decimal digits.

A computer must provide at least single-precision representation to conform to the
IEEE standard. Double-precision representation is optional. The standard also specifies
certain optional extended versions of both of these formats. The extended versions are
intended to provide increased precision and increased exponent range for the represen-
tation of intermediate values in a sequence of calculations. For example, the dot product
of two vectors of numbers can be computed by accumulating the sum of products in
extended precision. The inputs are given in a standard precision, either single or double.
and the answer is truncated to the same precision. The use of extended formats helps
to reduce the size of the accumulated round-off error in a sequence of calculations. Ex-
tended formats also enhance the accuracy of evaluation of elementary functions such as
sine. cosine, and so on. In addition to requiring the four basic arithmetic operations, the
standard requires that the operations of remainder, square root, and conversion between
binary and decimal representations be provided.

We note two basic aspects of operating with floating-point numbers. First, if a num-
ber is not normalized, it can always be put in normalized form by shifting the fraction and
adjusting the exponent. Figure 6.25 shows an unnormalized value, 0.0010110 ... x 27,
and its normalized version, 1.0110... x 2°. Since the scale factor is in the form 2'.
shifting the mantissa right or left by one bit position is compensated by an increase or a
decrease of 1 in the exponent, respectively. Second, as computations proceed, a number
that does not fall in the representable range of normal numbers might be generated. In
single precision, this means that its normalized representation requires an exponent less
than —126 or greater than +127. In the first case, we say that underflow has occurred,
and in the second case. we say that overflow has occurred. Both underflow and overflow
are arithmetic exceptions that are considered below.
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excess-127 exponent
/—/\_‘_—

0]10001000400101160 ...

(There is no implicit 1 to the left of the binary point.)

9
Value represented = +0.0010110... x2

(a) Unnormalized value

0110000101401 160 ...

Value represented = + 1.0110... X 26

(b) Normalized version

Figure 6.25 Floating-point normalization in IEEE single-precision format.

Special Values

The end values 0 and 255 of the excess-127 exponent E’ are used to represent
special values. When E’ = 0 and the mantissa fraction M is zero. the value exact O
is represented. When E' = 255 and M = 0, the value o0 is represented. where o0
is the result of dividing a normal number by zero. The sign bit is still part of these
representations, so there are £0 and %0 representations.

When E' = 0 and M # 0, denormal numbers are represented. Their value is
+0.M x 272 Therefore. they are smaller than the smallest normal number. There is
no implied one to the left of the binary point. and M is any nonzero 23-bit fraction. The
purpose of introducing denormal numbers is to allow for gradual underflow. providing
an extension of the range of normal representable numbers that is useful in dealing
with very small numbers in certain situations. When E" = 255 and M # 0. the value
represented is called Not a Number (NaN). A NaN is the result of performing an invalid
operation such as 0/0 or v/—1.

Exceptions

In conforming to the IEEE Standard. a processor must set exception flags if any
of the following occur in performing operations: underflow, overflow, divide by zero,
inexact, invalid. We have already mentioned the first three. /nexact is the name for a
result that requires rounding in order to be represented in one of the normal formats.
An invalid exception occurs if operations such as 0/0 or V=1 are attempted. When
exceptions occur, the results are set to special values.

If interrupts are enabled for any of the exception flags, system or user-defined
routines are entered when the associated exception occurs. Alternatively, the application
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program can test for the occurrence of exceptions. as necessary. and decide how to
proceed.

A more detailed discussion of the floating-point issues raised here and in the next
two sections is given in Appendix A of Hennessy and Patterson [2].

6.7.2 ARITHMETIC OPERATIONS ON FLOATING-POINT NUMBERS

In this section. we outline the general procedures for addition. subtraction, multipli-
cation. and division of floating-point numbers. The rules we give apply 1o the single-
precision IEEE standard format. These rules specify only the major steps needed to
perform the four operations: for example. the possibility that overflow or underflow
might occur i1s not discussed. Furthermore. intermediate results for both mantissas and
exponents might require more than 24 and 8 bits. respectively. These and other aspects
of the operations must be carefully considered in designing an arithmetic unit that
meets the standard. Although we do not provide full details in specifying the rules. we
consider some aspects of implementation. including rounding. in later sections.

If their exponents differ. the mantissas of floating-point numbers must be shifted
with respect to each other before they are added or subtracted. Consider a decimal ex-
ample in which we wish to add 2.9400 x 107 to 4.3100 x 10*. We rewrite 2.9400 x 10°
as 0.0294 x 10" and then perform addition of the mantissas to get 4.3394 x 10, The
rule for addition and subtraction can be stated as follows:

Add/Subtract Rule

I. Choose the number with the smaller exponent and shift its mantissa right a number
of steps equal to the difference in exponents.

2. Set the exponent of the result equal to the larger exponent.

3. Perform addition/subtraction on the mantissas and determine the sign of the result.
4. Normalize the resulting value. if necessary.

Multiplication and division are somewhat easier than addition and subtraction, in that
no alignment of mantissas is needed.

Multiply Rule

1. Add the exponents and subtract 127.

o

Multiply the mantissas and determine the sign of the result.
3. Normalize the resulting value. if necessary.
Divide Rule

1. Subtract the exponents and add 127.
Divide the mantissas and determine the sign of the result.

[§]

3. Normalize the resulting value. if necessary.

The addition or subtraction of 127 in the multiply and divide rules results from using
the excess-127 notation for exponents.
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6.7.3 GUARD BiTS AND TRUNCATION

Let us consider some important aspects of implementing the steps in the preceding
algorithms. Although the mantissas of initial operands and final results are limited to
24 bits. including the implicit leading 1. it is important to retain extra bits, often called
euard bits, during the intermediate steps. This yields maximum accuracy in the final
results.

Removing guard bits in generating a final result requires that the extended mantissa
be truncated 1o create a 24-bit number that approximates the fonger version. This
operation also arises in other situations. for instance. in converting from decimal to
binary numbers. We should mention that the general term rounding is also used for the

truncation operation, but we will use a more restrictive definition of rounding as one of

the forms of truncation.

There are several ways to truncate. The simplest way is to remove the guard bits
and make no changes in the retained bits. This is called chopping. Suppose we want
to truncate a fraction from six to three bits by this method. All fractions in the range
0.h.1b_2b_ 3000 to 0.b_yh »b 5111 are truncated to 0.6 ;b >b_z. The error in the
3-bit result ranges from 0 to 0.000111. In other words. the error in chopping ranges
from O to almost 1 in the least significant position of the retained bits. In our example.
this is the b 3 position. The result of chopping is a biased approximation because the
error range is not symmetrical about 0.

The next simplest method of truncation is Von Neumann rounding. It the bits to
be removed are all 0s. they are simply dropped. with no changes to the retained bits,
However. if any of the bits to be removed are 1. the least significant bit of the retained
bits is setto 1. Inour 6-bit to 3-bit truncation example. all 6-bit fractions withh 36 sb_
not equal to 000 are truncated to 0.h..1 b 2 1. The error in this truncation method ranges

between —1 and +1 in the LSB position of the retained bits. Although the range of

error is larger with this technique than it is with chopping. the maximum magnitude
is the same. and the approximation is inhbiased because the error range is symmetrical
about 0.

Unbiased approximations are advantageous if many operands and operations are
involved in generating a result, because positive errors tend to offset negative errors
as the computation proceeds. Statistically, we can expect the results of a complex
computation to have a high probability of accuracy.

The third truncation method is a rounding procedure. Rounding achieves the closest
approximation to the number being truncated and is an unbiased technique. The proce-
dure is as follows: A 1 is added to the LSB position of the bits to be retained if there is a
I in the MSB position of the bits being removed. Thus, 0.6 b ~b_x1 .. isrounded to
O0.b 1h b 1 +0.001 and 0.h_1b b ;0. isrounded to 0.5 .1/ »b 3. This provides
the desired approximation, except for the case in which the bits 1o be removed are
10 ... 0. This is a tie situation: the longer value is halfway between the two closest trun-
cated representations. To break the tie in an unbiased way. one possibility is to choose
the retained bits to be the nearest even number. In terms of our 6-bit example. the value
0.51h -0100 is truncated to the value 0.6 1h >0, and 0.5 1h_, 1100 is truncated to
0.h. (b »1 + 0.001. The descriptive phrase “round to the nearest number or nearest
even number in case of a tie” is sometimes used to refer to this truncation technique.
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The error range is approximately —! to +! in the LSB position of the retained bits.
Clearly. this is the best method. However. it is also the most difficult to implement
because it requires an addition operation and a possible renormalization. This round-
ing technique is the default mode for truncation specitied in the 1IEEE floating-point
standard. The standard also specifies other truncation methods. referring to all of them
as rounding modes.

This discussion of errors that are introduced when guard bits are removed by
truncation has treated the case of a single truncation operation. When a long series of
calculations involving floating-point numbers is performed. the analysis that determines
error ranges or bounds for the final results can be a complicated study. We do not discuss
this aspect of numerical computation further. except to make a few comments on the
way that guard bits and rounding are handled in the IEEE floating-point standard.

Results of single operations must be computed to be accurate within half a unit
in the LSB position. In general. this requires that rounding be used as the truncation
method. Implementing this rounding scheme requires only three guard bits to be carried
along during the intermediate steps in performing the operations described. The first
two of these bits are the two most significant bits of the section of the mantissa to be
removed. The third bit is the logical OR of all bits beyond these first two bits in the
full representation of the mantissa. This bit is relatively easy to maintain during the
intermediate steps of the operations to be performed. It should be initialized t0 0. If a |
is shifted out through this position. the bit becomes I and retains that value: hence. it
is usually called the sticky bit.

6.7.4 IMPLEMENTING FLOATING-POINT OPERATIONS

The hardware implementation of floating-point operations involves a considerable
amount of Jogic circuitry. These operations can also be implemented by software rou-
tines. In either case, the computer must be able to convert input and output from and
to the user’s decimal representation of numbers. In most general-purpose processors.
floating-point operations are available at the machine-instruction level. implemented
in hardware.

An example of the implementation of floating-point operations is shown in Fig-
ure 6.26. This is a block diagram of a hardware implementation for the addition and
subtraction of 32-bit floating-point operands that have the format shown in Figure 6.244.
Following the Add/Subtract rule given in Section 6.7.2. we see that the first step is to
compare exponents to determine how far to shift the mantissa of the number with the
smaller exponent. The shift-count value, 1. is determined by the 8-bit subtractor circuit
in the upper left corner of the figure. The magnitude of the difference Ey— Ej or
n.is sent to the SHIFTER unit. It # is larger than the number of significant bits of
the operands. then the answer is essentially the larger operand (except for guard and
sticky-bit considerations in rounding). and shortcuts can be taken in deriving the result.
We do not explore this in detail.

The sign of the difference that results from comparing exponents determines which
mantissa is to be shifted. Therefore. in step 1. the sign is sent to the SWAP network in
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the upper right corner of Figure 6.26. If the sign is 0, then £/, > E’, and the mantissas
M4 and My are sent straight through the SWAP network. This results in My being
sent to the SHIFTER, to be shifted n positions to the right. The other mantissa. M. is
sent directly to the mantissa adder/subtractor. If the sign is 1, then E', < E’, and the
mantissas are swapped before they are sent to the SHIFTER.

Step 2 is performed by the two-way multiplexer, MUX, near the bottom left corner
of the figure. The exponent of the result. £'. is tentatively determined as E', if £/, > E,.
or Ey if E), < E},, based on the sign of the difference resulting from comparing
exponents in step |

Step 3 involves the major component, the mantissa adder/subtractor in the mid-
dle of the figure. The CONTROL logic determines whether the mantissas are to be
added or subtracted. This is decided by the signs of the operands (S, and Sg) and
the operation (Add or Subtract) that is to be performed on the operands. The CON-
TROL logic also determines the sign of the result, Sg. For example, if A is nega-
tive (S4 = 1), B is positive (Sg =0), and the operation is A — B, then the mantissas
are added and the sign of the result is negative (Sg = 1). On the other hand. if A and
B are both positive and the operation is A — B, then the mantissas are subtracted.
The sign of the result. Sg. now depends on the mantissa subtraction operation. For
instance, it £, > E',, then M, — (shifted Mp) is positive and the result is positive. But
it £} > E',. then My — (shifted M) is positive and the result is negative. This ex-
ample shows that the sign from the exponent comparison is also required as an in-
put to the CONTROL network. When E’, = E; and the mantissas are subtracted.
the sign of the mantissa adder/subtractor output determines the sign of the result. The
reader should now be able to construct the complete truth table for the CONTROL
network.

Step 4 of the Add/Subtract rule consists of normalizing the result of step 3, mantissa
M. The number of leading zeros in M determines the number of bit shifts, X, to be applied
to M. The normalized value is truncated to generate the 24-bit mantissa, Mg. of the
result. The value X is also subtracted from the tentative result exponent E’ to generate
the true result exponent. E. Note that only a single right shift might be needed to
normalize the result. This would be the case if two mantissas of the form 1.xx... were
added. The vector M would then have the form lx.xx.... This would correspond to an
X value of —1 in the figure.

We have not given any details on the guard bits that must be carried along with
intermediate mantissa values. In the 1EEE standard. only a few bits are needed. as
discussed earlier, to generate the 24-bit normalized mantissa of the result.

Let us consider the actual hardware that is needed to implement the blocks in
Figure 6.26. The two 8-bit subtractors and the mantissa adder/subtractor can be imple-
mented by combinational logic. as discussed earlier in this chapter. Because their outputs
must be in sign-and-magnitude form. we must modify some of our earlier discussions.
A combination of 1's-complement arithmetic and sign-and-magnitude representation
is often used. Considerable flexibility is allowed in implementing the SHIFTER and the
output normalization operation. If a design with a modest logic gate count is required,
the operations can be implemented with shift registers. However, they can also be built
as combinational logic units for high-performance, but in that case. a significant number
of logic gates is needed. In high-performance processors. a significant portion of the
chip area is assigned to floating-point operations.
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6.8 CONCLUDING REMARKS

Computer arithmetic poses several interesting logic design problems. This chapter
discussed some of the techniques that have proven useful in designing binary arithmetic
units. The carry-lookahead technique is one of the major ideas in high-performance
adder design. In the design of fast multipliers, bit-pair recoding of the multiplier. derived
from the Booth algorithm. reduces the number of summands that must be added to
generate the product. Carry-save addition substantially reduces the time needed to add
the summands.

The 1EEE floating-point number representation standard was described. and a set
of rules for performing the four standard operations was given. As an example of the
circuit complexity required to implement floating-point operations. the block diagram
of an addition/subtraction unit was described.

PROBLEMS

Consider the binary numbers in the following addition and subtraction problems to
be signed. 6-bit values in the 2’s-complement representation. Perform the operations
indicated, specify whether or not arithmetic overflow occurs, and check your answers
by converting operands and results to decimal sign-and-magnitude representation.
010110 101011 1T
+001001  +100101 4000111
011001 HOTLI 010101
+010000  +111001  +101011

010110 111110 100001
—01L111 —100101 —011101

LITELE 000111 011010
—000111  =111000  =100010

Signed binary fractions in 2’s-complement representation are discussed at the beginning

of Section 6.7.

(a) Express the decimal values 0.5, —0.123, —0.75. and —0.1 as signed 6-bit fractions.
(See Appendix E for decimal-to-binary fraction conversion.)

(h) What is the maximum representation error. e. involved in using only 5 significant
bits after the binary point?

(¢) Calculate the number of bits needed after the binary point so that

(a) e

A

1
10
__l_
100
I
1000
na
1

(hy e <
(¢) ¢ <

(dy e <
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The I's-complement and 2’s-complement binary representation methods are special
cases of the (b — 1)’s-complement and b’s-complement representation techniques in
base b number systems. For example. consider the decimal system. The sign-and-
magnitude values -+526. —526. +70. and —70 have 4-digit signed-number repre-
sentations in each of the two complement systems, as shown in Figure P6.1. The
9’s-complement is formed by taking the complement of each digit position with re-
spect to 9. The 10’s-complement is formed by adding 1 to the 9°s-complement. In each
of the latter two representations, the leftmost digit is zero for a positive number and 9
for a negative number.

Representation Examples

Sign and magnitude +526 —526 +70 =70
9's complement 0526 9473 0070 9929
10°s complement 0526 9474 0070 9930

Figure P6.1 Signed numbers in base 10 used in Problem 6.3.

Now consider the base-3 (ternary) system. in which the unsigned. 5-digit number
sttty has the value 1y x 3% 413 x 35 41 x 37 41 x 3" 41y x 3% with 0 < 1, < 2.
Express the ternary sign-and-magnitude numbers +11011, —10222. 4+2120. —1212.
+10, and —201 as 6-digit. signed. ternary numbers in the 3's-complement system.

Representeach of the decimal values 56, —37. 122, and — 123 as signed 6-digit numbers

in the 3’s-complement ternary format. perform addition and subtraction on them in all

possible pairwise combinations, and state whether or not arithmetic overflow occurs

for each operation performed. (See Problem 6.3 for a definition of the ternary number

system. and use a technique analogous to that given in Appendix E for decimal-to-

ternary integer conversion.)

A half adder is a combinational logic circuit that has two inputs, x and v. and two

outputs. s and ¢. that are the sum and carry-out. respectively. resulting from the binary

addition of v and y.

(a) Design a half adder as a two-level AND-OR circuit.

(h) Show how to implement a full adder. as shown in Figure 6.2a, by using two half
adders and external logic gates, as necessary.

(¢) Compare the longest logic delay path through the network derived in Part () to
that of the logic delay of the adder network shown in Figure 6.24.

Write a 68000 or IA-32 program to transform a 16-bit positive binary number into a
5-digit decimal number in which each digit of the number is coded in the binary-coded
decimal (BCD) code. These BCD digit codes are to occupy the low-order 4 bits of
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five successive byte locations in the main memory. Use the conversion technique based
on successive division by 10. This method is analogous to successive division by 2
when converting decimal-to-binary, as discussed in Appendix E. Consult Appendix C
(63000) or D (1A-32) for the format and operation of the Divide instruction.

Assume that four BCD digits, representing a decimal integer in the range 0 to 9999.
are packed into the lower half of a 32-bit memory location DECIMAL. Write an ARM,
68000, or IA-32 subroutine to convert the decimal integer stored at DECIMAL into
binary representation and to store it in the memory location BINARY.

A modulo 10 adder is needed for adding BCD digits. Modulo 10 addition of two BCD
digits, A = A3A,A;Ag and B = B3 BB, By, can be achieved as follows: Add A to B
(binary addition). Then, if the result is an illegal code that 1s greater than or equal to
1010, add 6. (Ignore overflow from this addition.)

(¢) When is the output carry equal to 1?
(b) Show that this algorithm gives correct results for

(1) A=0101 and B =0110
(2) A=0011 and B =0100

(¢) Design a BCD digit adder using a 4-bit binary adder and external logic gates as
needed. The inputs are A3A>A;Aq, B3BB By, and a carry-in. The outputs are
the sum digit $35,5;Sy and the carry-out. A cascade of such blocks can form a
ripple-carry BCD adder.

Show that the logic expression ¢, @c¢,_ is a correct indicator of overflow in the addition
of 2's-complement integers, by using an appropriate truth table.

(a) Design a 64-bit adder that uses four of the 16-bit carry-lookahead adders shown
in Figure 6.5 along with additional logic to generate ¢je, €32, €48, and ce4, from ¢y
and the G!/ and P/’ variables shown in this figure. What is the relationship of the
additional logic to the logic inside each lookahead circuit in the figure?

(b) Show that the delay through the 64-bit adder is 12 gate delays for s63 and 7 gate
delays for cg4, as claimed at the end of Section 6.2.1.

(¢) Compare the gate delays to produce s3; and 32 in the 64-bit adder of part (a) to the
gate delays for the same variables in the 32-bit adder built from a cascade of two
16-bit adders, as discussed in Section 6.2.1.

(a) How many logic gates are needed to build the 4-bit carry-lookahead adder shown
in Figure 6.47?

(b) Use appropriate parts of the result from Part (a) to calculate how many logic gates
are needed to build the 16-bit carry-lookahead adder shown in Figure 6.5.

Show that the worst case delay through an n x n array of the type shown in Figure 6.6b
is 6(n — 1) — 1 gate delays, as claimed in Section 6.3.

Using manual methods, perform the operations A x B and A <+ B on the 5-bit unsigned
numbers A = 10101 and B = 00101.
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Show how the multiplication and division operations in Problem 6.13 would be per-
formed by the hardware in Figures 6.7a and 6.21, respectively, by constructing charts
similar to those in Figures 6.7b and 6.23.

Write an ARM, 68000, or IA-32 program for the multiplication of two 32-bit unsigned
numbers that is parterned after the technique used in Figure 6.7. Assume that the
multiplier and multiplicand are in registers R> and R, respectively. The product is to
be developed in registers R; (high-order half) and R, (low-order half). (Hint: Use a
combination of Shift and Rotate operations for a double-register shift.)

Write an ARM. 68000, or [A-32 program for integer division based on the nonrestoring-
division algorithm. Assume that both operands are positive, that is, the leftmost bit is
zero for both the dividend and the divisor.

Multiply each of the following pairs of signed 2’s-complement numbers using the Booth
algorithm. In each case, assume that A is the multiplicand and B is the multiplier.

(@) A=010111 and B =110110
(b) A=110011 and B = 101100
(¢} A=110101 and B =011011l
(d)y A=001111 and B =001111

Repeat Problem 6.17 using bit-pairing of the multipliers.

Indicate generally how to modify the circuit diagram in Figure 6.7a to implement
multiplication of signed. 2’s-complement, n-bit numbers using the Booth algorithm, by
clearly specifying inputs and outputs for the Control sequencer and any other changes
needed around the adder and A register.

If the product of two, n-bit, signed numbers in the 2’s-complement representation can
be represented in # bits, the manual multiplication algorithm shown in Figure 6.6a can
be used directly, treating the sign bits the same as the other bits. Try this on each of the
following pairs of 4-bit signed numbers:

(a) Multiplicand = 1110 and Multiplier = 1101
(h) Multiplicand = 0010 and Multiplier = 1110
Why does this work correctly?

An integer arithmetic unit that can perform addition and multiplication of 16-bit un-
signed numbers is to be used to multiply two 32-bit unsigned numbers. All operands.
intermediate results. and final results are held in 16-bit registers labeled R, through R 5.
The hardware multiplier multiplies the contents of R; (multiplicand) by R; (multiplier)
and stores the double-length 32-bit product in registers R;and R; |, with the low-order
half'in R;. When j = i — I, the product overwrites both operands. The hardware adder
adds the contents of R, and R; and puts the result in R;. The input carry to an Add
operation is (), and the input carry to an Add-with-carry operation is the contents of a
carry flag C. The output carry from the adder is always stored in C.

Specify the steps of a procedure for multiplying two 32-bit operands in registers
Ry, Ry, and R;3, R, high-order halves first, leaving the 64-bit product in registers
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Ris. Ri1. Ryx.and Ry5>. Any of the registers Ry through Ry may be used for intermediate
values. if necessary. Each step in the procedure can be a multiplication. or an addition.
or a register transfer operation.

() Calculate the delay. in terms of logic gate delays. for the product bit p7 in each of
the arrays in Figure 6.16. Assume that each output from a full adder is available two
cate delays after the inputs are available. Include the AND gate delay to generate
all m;¢; products at the beginning.

(h) The delay for the extension of Figure 6.16¢ to the n x n case has been stated as
6(n — 1) — 1 in Section 6.4. Develop a similar expression for the extension of
Figure 6.16b to the n x n case.

Develop the derivation for the formula 1.7/0g:k — 1.7 for the number of carry-save
addition steps needed to reduce A summands te two vectors. (This formula is stated
without derivation in Section 6.5.2.)

(¢) How many CSA levels are needed to reduce 16 summands to 2 using a pattern
similar to that shown in Figure 6.197

(h) Draw the pattern for reducing 32 summands to 2 to prove that the claim of 8 levels
in Section 6.5.2 1s correct.

(¢) Compare the exact answers in Parts (¢) and (0) to the results derived from the
approximation 1.7log-k - 1.7.

In Section 6.7. we used the practical-sized 32-hit IEEE standard format for floating-
point numbers. Here, we use a shortened format that retains all the pertinent concepts
but is manageable for working through numerical exercises. Consider that floating-
point numbers are represented in a 12-bit format as shown in Figure P6.2. The scale
factor has an implied base of 2 and a 5-bit. excess-15 exponent. with the two end values
of 0 and 31 used to signify exact 0 and infinity. respectively. The 6-bit mantissa is
normalized as in the IEEE tormat, with an implied [ to the left of the binary point.

(¢«) Represent the numbers +-1.7. =0.012. +19. and L in this format.

(h) What are the smallest and largest numbers representable in this format?

(¢) How does the range calculated in Part (h) compare to the ranges of a 12-bit signed
integer and a 12-bit signed fraction?

12 bits

| e -

I

V
S bt 6 bits
1 bit for sign ot number exeess-15 fractional

() signifies + exponent mantissa

| signifies -

Figure P6.2 Floatirg-point format used in Problem 6.25.
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(d) Perform Add. Subtract. Multiply. and Divide operations on the operands

A=10|10001 | 011011

B=|1/1]0ll1l | 101010

Consider a 16-bit. floating-point number in a format similar to that discussed in Prob-
lem 6.25. with a 6-bit exponent and a 9-bit normalized fractional mantissa. The base
of the scale factor is 2 and the exponent is represented in excess-31 format,

{a) Add the numbers A and B. formatted as follows:

A= |0 | 100001 | 111111110

B=10 |01l | 001010101

Give the answer in normalized form. Remember that an implicit | is to the left of
the binary point but is not included in the A and B formats. Use rounding when
producing the final normalized 9-bit mantissa.

(h) Using decimal numbers . x. v, and z. express the magnitude of the largest and
smallest (nonzero) values representable in the preceding normalized floating-point
format. Use the following form:

Largest = w x 2!
Smallest = v x 277

How does the excess-v representation for exponents of the scale factor in the floating-
point number representation of Figure 6.24« facilitate the comparison of the relative
sizes of two floating-point numbers? (Hint: Assume that a combinational logic network
that compares the relative sizes of two, 32-bit. unsigned integers is available. Use this
network. along with external logic gates. as necessary, to design the required network
for the comparison of floating-point numbers.)

InProblem 6.25a. conversion of the simple decimal numbers into binary tloating-point
format is straightforward. However. if the decimal numbers are given in floating-point
format. conversion is not straightforward because we cannot separately convert the
mantissa and the exponent of the scale factor because 10' = 2 does not. in general.
allow both v and v to be integers. Suppose a table of binary. floating-point numbers
;- such that 7; = 10" for x, in the representable range, is stored in a computer. Give
a procedure in general terms for converting a given decimal floating-point number
into binary floating-point format. You may use both the integer and floating-point
instructions available in the computer.
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Consider the representation of the decimal number 0.1 as a signed. 8-bit. binary fraction
in the representation discussed at the beginning of Section 6.7. If the number does not
convert exactly into this 8-bit format. approximate the number using all three of the
truncation methods discussed in Section 6.7.3.

Construct an example to show that three guard bits are needed to produce the correct
answer when two positive numbers are subtracted.

Which of the four 6-bit answers to Problem 6.2« are not exact? For each of these cases,
give the three 6-bit values that correspond (o the three types of truncation defined in
Section 6.7.3.

Derive logic equations that specify the Add/Sub and Sk outputs of the combinational
CONTROL network in Figure 6.26.

If gate fan-in is limited to four, how can the SHIFTER in Figure 6.26 be implemented
combinationally?

(«) Sketch a logic-gate network that implements the multiplexer MUX in Figure 6.20.
(h) Relate the structure of the SWAP network in Figure 6.26 to your solution to Part ().

How can the leading zeros detector in Figure 6.26 be implemented combinationally?

The mantissa adder-subtractor in Figure 6.26 operates on positive. unsigned binary
fractions and must produce a sign-and-magnitude result. In the discussion accompa-
nying Figure 6.26. we state that I's-complement arithmetic is convenient because of
the required format for input and output operands. When adding two signed numbers
in 1's-complement notation. the carry-out from the sign position must be added to the
result to obtain the correct signed answer. This is called end-around carry correction.
Consider the two examples in Figure P6.3. which illustrate addition using signed. 4-bit
encodings of operands and answers in the I's-complement system.

The 1's-complement arithmetic system is convenient when a sign-and-magnitude
result is to be generated because a negative number in 1's-complement notation can be
converted to sign-and-magnitude form by complementing the bits to the right of the
sign-bit position. Using 2's-complement arithmetic. addition of 41 is needed to convert
a negative value into sign-and-magnitude notation. If a carry-lookahead adder is used.
it is possible to incorporate the end-around carry operation required by 1's-complement
arithmetic into the lookahead logic. With this discussion as a guide. give the complete
design of the 1's-complement adder-subtractor required in Figure 6.26.

3) 0 0 1 1 (6) 01 10
+(=5)  +[0] 120 10 +0=3 +[] tel 0000
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L0 00 1 1

Figure P6.3  1’s-complement addition used in Problem 6.36.
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